Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(1): 109-121.e3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36549298

RESUMO

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Mudança Climática , Ecossistema , Água Doce , Probabilidade
2.
PeerJ ; 8: e9775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904103

RESUMO

BACKGROUND: Anosteira pulchra is one of two species of the obligately-aquatic freshwater clade Carettochelyidae (pig-nosed turtles) from the Eocene of North America. Anosteira pulchra is typically rare in collections, and their distribution is poorly documented. The Uinta Formation [Fm.] contains a diverse assemblage of turtles from the Uintan North American Land Mammal Age. Whereas turtles are abundantly preserved in the Uinta Fm., A. pulchra has been reported only from a few specimens in the Uinta C Member. METHODS: We describe new records of Anosteira pulchra from the Uinta Basin and analyze the distribution of 95 specimens from multiple repositories in the previously published stratigraphic framework of the middle and upper Uinta Fm. RESULTS: Here we report the first records of the species from the Uinta B interval, document it from multiple levels within the stratigraphic section and examine its uncommon appearance in only approximately 5% of localities where turtles have been systematically collected. This study details and extends the range of A. pulchra in the Uinta Fm. and demonstrates the presence of the taxon in significantly lower stratigraphic layers. These newly described fossils include previously unknown elements and associated trace fossils, with new anatomical information presented. This study provides insight into the taxonomy of Anosteira spp. in the middle Eocene, and suggests the presence of a single species, though no synonymy is defined here due to limits in Bridger material.

3.
J Hum Evol ; 122: 1-22, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935935

RESUMO

Euprimates are unusual among mammals in having fingers and toes with flat nails. While it seems clear that the ancestral stock from which euprimates evolved had claw-bearing digits, the available fossil record has not yet contributed a detailed understanding of the transition from claws to nails. This study helps clarify the evolutionary history of the second pedal digit with fossils representing the distal phalanx of digit two (dpII), and has broader implications for other digits. Among extant primates, the keratinized structure on the pedal dpII widely varies in form. Extant strepsirrhines and tarsiers have narrow, distally tapering, dorsally inclined nails (termed a 'grooming claws' for their use in autogrooming), while extant anthropoids have more typical nails that are wider and lack distal tapering or dorsal inclination. At least two fossil primate species thought to be stem members of the Strepsirrhini appear to have had grooming claws, yet reconstructions of the ancestral euprimate condition based on direct evidence from the fossil record are ambiguous due to inadequate fossil evidence for the earliest haplorhines. Seven recently discovered, isolated distal phalanges from four early Eocene localities in Wyoming (USA) closely resemble those of the pedal dpII in extant prosimians. On the basis of faunal associations, size, and morphology, these specimens are recognized as the grooming phalanges of five genera of haplorhine primates, including one of the oldest known euprimates (∼56 Ma), Teilhardina brandti. Both the phylogenetic distribution and antiquity of primate grooming phalanges now strongly suggest that ancestral euprimates had grooming claws, that these structures were modified from a primitive claw rather than a flat nail, and that the evolutionary loss of 'grooming claws' represents an apomorphy for crown anthropoids.


Assuntos
Evolução Biológica , Falanges dos Dedos da Mão/anatomia & histologia , Fósseis/anatomia & histologia , Casco e Garras/anatomia & histologia , Primatas/anatomia & histologia , Animais , Wyoming
4.
R Soc Open Sci ; 3(11): 160581, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018649

RESUMO

The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

5.
PeerJ ; 4: e2639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867761

RESUMO

Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt. Akhnatenavus nefertiticyon sp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. In A. nefertiticyon the tallest, piercing cusp on M1-M2 is the paracone. Brychotherium ephalmos gen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. In B. ephalmos the tallest, piercing cusp on M1-M2 is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships. B. ephalmos is consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, and Akhnatenavus is consistently recovered in Hyainailourinae as part of an Afro-Arabian radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of "proviverrines," hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades-Hyainailourinae, Apterodontinae, and Teratodontinae-as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

6.
Proc Biol Sci ; 283(1839)2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655766

RESUMO

Ectotherms have close physiological ties with the thermal environment; consequently, the impact of future climate change on their biogeographic distributions is of major interest. Here, we use the modern and deep-time fossil record of testudines (turtles, tortoises, and terrapins) to provide the first test of climate on the niche limits of both extant and extinct (Late Cretaceous, Maastrichtian) taxa. Ecological niche models are used to assess niche overlap in model projections for key testudine ecotypes and families. An ordination framework is applied to quantify metrics of niche change (stability, expansion, and unfilling) between the Maastrichtian and present day. Results indicate that niche stability over evolutionary timescales varies between testudine clades. Groups that originated in the Early Cretaceous show climatic niche stability, whereas those diversifying towards the end of the Cretaceous display larger niche expansion towards the modern. Temperature is the dominant driver of modern and past distributions, whereas precipitation is important for freshwater turtle ranges. Our findings demonstrate that testudines were able to occupy warmer climates than present day in the geological record. However, the projected rate and magnitude of future environmental change, in concert with other conservation threats, presents challenges for acclimation or adaptation.


Assuntos
Evolução Biológica , Mudança Climática , Ecossistema , Tartarugas , Animais , Fósseis
7.
Nat Commun ; 6: 7848, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26234913

RESUMO

Chelonians are ectothermic, with an extensive fossil record preserved in diverse palaeoenvironmental settings: consequently, they represent excellent models for investigating organismal response to long-term environmental change. We present the first Mesozoic chelonian taxic richness curve, subsampled to remove geological/collection biases, and demonstrate that their palaeolatitudinal distributions were climate mediated. At the Jurassic/Cretaceous transition, marine taxa exhibit minimal diversity change, whereas non-marine diversity increases. A Late Cretaceous peak in 'global' non-marine subsampled richness coincides with high palaeolatitude occurrences and the Cretaceous thermal maximum (CTM): however, this peak also records increased geographic sampling and is not recovered in continental-scale diversity patterns. Nevertheless, a model-detrended richness series (insensitive to geographic sampling) also recovers a Late Cretaceous peak, suggesting genuine geographic range expansion among non-marine turtles during the CTM. Increased Late Cretaceous diversity derives from intensive North American sampling, but subsampling indicates that Early Cretaceous European/Asian diversity may have exceeded that of Late Cretaceous North America.


Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Fósseis , Tartarugas , Animais , Ásia , Europa (Continente) , América do Norte
8.
Proc Biol Sci ; 282(1812): 20151097, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26224712

RESUMO

Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution.


Assuntos
Evolução Biológica , Tamanho Corporal , Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Modelos Biológicos , Animais , Mudança Climática , Mamíferos/fisiologia , Temperatura , Wyoming
9.
Proc Biol Sci ; 280(1763): 20130665, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23740779

RESUMO

Mammals dominate modern terrestrial herbivore ecosystems, whereas extant herbivorous reptiles are limited in diversity and body size. The evolution of reptile herbivory and its relationship to mammalian diversification is poorly understood with respect to climate and the roles of predation pressure and competition for food resources. Here, we describe a giant fossil acrodontan lizard recovered with a diverse mammal assemblage from the late middle Eocene Pondaung Formation of Myanmar, which provides a historical test of factors controlling body size in herbivorous squamates. We infer a predominately herbivorous feeding ecology for the new acrodontan based on dental anatomy, phylogenetic relationships and body size. Ranking body masses for Pondaung Formation vertebrates indicates that the lizard occupied a size niche among the larger herbivores and was larger than most carnivorous mammals. Paleotemperature estimates of Pondaung Formation environments based on the body size of the new lizard are approximately 2-5°C higher than modern. These results indicate that competitive exclusion and predation by mammals did not restrict body size evolution in these herbivorous squamates, and elevated temperatures relative to modern climates during the Paleogene greenhouse may have resulted in the evolution of gigantism through elevated poikilothermic metabolic rates and in response to increases in floral productivity.


Assuntos
Ecossistema , Fósseis , Lagartos , Animais , Evolução Biológica , Tamanho Corporal/genética , Efeito Estufa , Herbivoria , Lagartos/genética , Lagartos/fisiologia , Mamíferos/genética , Mamíferos/fisiologia , Mianmar , Filogenia
10.
PLoS One ; 8(3): e58667, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516530

RESUMO

The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.


Assuntos
Tamanho Corporal , Encéfalo/anatomia & histologia , Eulipotyphla/anatomia & histologia , Animais , Eulipotyphla/fisiologia , Evolução Molecular , Tamanho do Órgão , Filogenia
12.
Front Oral Biol ; 13: 3-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19828961

RESUMO

The condylarths, or archaic ungulates, are a paraphyletic mammalian group including a number of fossil taxa whose relationships are unresolved. Included are two genera from the Paleocene and Eocene of North America, Meniscotherium and Phenacodus. Some workers place both genera in the family Phenacodontidae, while others exclude the highly dentally derived Meniscotherium. In this study, we use growth increments in histological thin sections to examine the timing of crown formation in five molars of Meniscotherium and one each of Phenacodusintermedius and Phenacodus trilobatus. We also use perikymata counts on an additional six molars of Meniscotherium. Although estimated body mass and molar dimensions in Meniscotherium are smaller than in either species of Phenacodus, molar formation times are longer, ranging from 0.71 to 1.44 years. Both Phenacodus molars take less than a year to form. Crown extension rates, the rate at which the crown grows in height, are as low as 3-15 microm per day in Meniscotherium, but range from 13 to 54 microm per day in Phenacodus. Although striae periodicities and daily enamel secretion rate are similar in both genera, the differences in the crown extension rate and overall timing of crown formation suggest differences in life histories and raise questions about the phylogenetic relationship of the two genera.


Assuntos
Artiodáctilos/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Paleodontologia , Perissodáctilos/anatomia & histologia , Coroa do Dente/crescimento & desenvolvimento , Animais , Artiodáctilos/crescimento & desenvolvimento , Evolução Biológica , Fósseis , Dente Molar/anatomia & histologia , Odontogênese , Perissodáctilos/crescimento & desenvolvimento , Filogenia , Especificidade da Espécie , Coroa do Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...